Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Zoonoses Public Health ; 69(5): 587-592, 2022 08.
Article in English | MEDLINE | ID: covidwho-1794548

ABSTRACT

SARS-CoV-2 infection has been described in a wide range of species, including domestic animals such as dogs and cats. Illness in dogs is usually self-limiting, and further diagnostics may not be pursued if clinical signs resolve or they respond to empirical treatment. As new variants emerge, the clinical presentation and role in transmission may vary in animals. This report highlights different clinical presentations and immunological responses in two SARS-CoV-2 Delta-variant-positive dogs with similar exposure to the same fully vaccinated human with a SARS-CoV-2 infection and emphasizes the need for active surveillance and additional One Health research on SARS-CoV-2 variant infections in companion animals and other species.


Subject(s)
COVID-19 , Dog Diseases , Animals , Animals, Domestic , COVID-19/veterinary , Cat Diseases , Cats , Dog Diseases/epidemiology , Dog Diseases/prevention & control , Dogs , Georgia , Humans , SARS-CoV-2/genetics
2.
N Engl J Med ; 386(9): 861-868, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1721753

ABSTRACT

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area.


Subject(s)
Aromatherapy/adverse effects , Burkholderia pseudomallei/isolation & purification , Disease Outbreaks , Melioidosis/epidemiology , Aerosols , Brain/microbiology , Brain/pathology , Burkholderia pseudomallei/genetics , COVID-19/complications , Child, Preschool , Fatal Outcome , Female , Genome, Bacterial , Humans , Lung/microbiology , Lung/pathology , Male , Melioidosis/complications , Middle Aged , Phylogeny , Shock, Septic/microbiology , United States/epidemiology
3.
J Am Vet Med Assoc ; 259(9): 1032-1039, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1468297

ABSTRACT

OBJECTIVE: To establish a pathoepidemiological model to evaluate the role of SARS-CoV-2 infection in the first 10 companion animals that died while infected with SARS-CoV-2 in the US. ANIMALS: 10 cats and dogs that tested positive for SARS-CoV-2 and died or were euthanized in the US between March 2020 and January 2021. PROCEDURES: A standardized algorithm was developed to direct case investigations, determine the necessity of certain diagnostic procedures, and evaluate the role, if any, that SARS-CoV-2 infection played in the animals' course of disease and death. Using clinical and diagnostic information collected by state animal health officials, state public health veterinarians, and other state and local partners, this algorithm was applied to each animal case. RESULTS: SARS-CoV-2 was an incidental finding in 8 animals, was suspected to have contributed to the severity of clinical signs leading to euthanasia in 1 dog, and was the primary reason for death for 1 cat. CONCLUSIONS AND CLINICAL RELEVANCE: This report provides the global community with a standardized process for directing case investigations, determining the necessity of certain diagnostic procedures, and determining the clinical significance of SARS-CoV-2 infections in animals with fatal outcomes and provides evidence that SARS-CoV-2 can, in rare circumstances, cause or contribute to death in pets.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/veterinary , Cat Diseases/diagnosis , Cat Diseases/epidemiology , Cats , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Pets , SARS-CoV-2
4.
Emerg Infect Dis ; 27(1)2021 01.
Article in English | MEDLINE | ID: covidwho-884956

ABSTRACT

We describe coronavirus disease (COVID-19) among US food manufacturing and agriculture workers and provide updated information on meat and poultry processing workers. Among 742 food and agriculture workplaces in 30 states, 8,978 workers had confirmed COVID-19; 55 workers died. Racial and ethnic minority workers could be disproportionately affected by COVID-19.


Subject(s)
Agriculture , COVID-19/epidemiology , COVID-19/transmission , Food Industry , SARS-CoV-2 , Adult , Aged , Female , Humans , Male , Middle Aged , United States/epidemiology , Young Adult
5.
MMWR Morb Mortal Wkly Rep ; 69(18)2020 May 08.
Article in English | MEDLINE | ID: covidwho-153541

ABSTRACT

Congregate work and residential locations are at increased risk for infectious disease transmission including respiratory illness outbreaks. SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is primarily spread person to person through respiratory droplets. Nationwide, the meat and poultry processing industry, an essential component of the U.S. food infrastructure, employs approximately 500,000 persons, many of whom work in proximity to other workers (1). Because of reports of initial cases of COVID-19, in some meat processing facilities, states were asked to provide aggregated data concerning the number of meat and poultry processing facilities affected by COVID-19 and the number of workers with COVID-19 in these facilities, including COVID-19-related deaths. Qualitative data gathered by CDC during on-site and remote assessments were analyzed and summarized. During April 9-27, aggregate data on COVID-19 cases among 115 meat or poultry processing facilities in 19 states were reported to CDC. Among these facilities, COVID-19 was diagnosed in 4,913 (approximately 3%) workers, and 20 COVID-19-related deaths were reported. Facility barriers to effective prevention and control of COVID-19 included difficulty distancing workers at least 6 feet (2 meters) from one another (2) and in implementing COVID-19-specific disinfection guidelines.* Among workers, socioeconomic challenges might contribute to working while feeling ill, particularly if there are management practices such as bonuses that incentivize attendance. Methods to decrease transmission within the facility include worker symptom screening programs, policies to discourage working while experiencing symptoms compatible with COVID-19, and social distancing by workers. Source control measures (e.g., the use of cloth face covers) as well as increased disinfection of high-touch surfaces are also important means of preventing SARS-CoV-2 exposure. Mitigation efforts to reduce transmission in the community should also be considered. Many of these measures might also reduce asymptomatic and presymptomatic transmission (3). Implementation of these public health strategies will help protect workers from COVID-19 in this industry and assist in preserving the critical meat and poultry production infrastructure (4).


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks , Food-Processing Industry , Occupational Diseases/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Animals , COVID-19 , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Humans , Meat , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Poultry , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL